Hiroshima Institute of Technology

Researchers Information System

Japanese English

TOP
Search by Faculty
or Department
Search by Keyword
Search by Research
Field
Detailed Search

Hiroshima Institute of Technology top

SUGIYAMA Minetaka

Profile Research field Research achievement

 

Books
No.Title URL, Autour Type, Publisher, Publication date, Range, ISBN 
1
Stress Biology of Yeasts and Fungi: Application for Industrial Brewing and Fermentation , Contributor, Springer Japan, Mar. 2015, Sugiyama, M., Sasano, Y., Harashima, S., Adaptation mechanism of yeast to weak organic acid (p.107-121),  
2
Microbial Production: From Genome Design to Cell Engineering , Contributor, Springer Japan, Mar. 2014, Sasano Y, Sugiyama M, Harashima S., Development and application of novel genome engineering technologies in Saccharomyces cerevisiae (p.53-62),  
3
Methods in Molecular Biology: YAC Protocols, second edition , Contributor, Humana Press Inc., Jan. 2006, Kim YH, Sugiyama M, Kaneko Y, Fukui K, Kobayashi A, Harashima S, 10A: polymerase chain reaction-mediated yeast artificial chromosome-splitting technology for generating targeted yeast artificial chromosomes subclones (p.103-115),  

 

Academic papers
No.Title URL, Journal, Vol( No), Start Page- End Page, Publication date, DOI 
1
Activity of NBRP Yeast and its contribution to yeast genetics and biotechnology , Agricultural Biotechnology, in press, ,  18- 22, Jul. 2021,  
2
Harnessing nanoparticles for the efficient delivery of the CRISPR/Cas9 system , Nano Today, 34,  100895- 100895, Aug. 2020,  
3
Analysis and enhancement of the ethanol resistance of Pichia kudriavzevii N77-4, a strain newly isolated from the Korean traditional fermentation starter Nuruk, for improved fermentation performance , J. Phys.: Conf. Ser., 1282: 012062, ,  012062- 012062, Aug. 2019,  
4
Analysis and improvement of ethanol resistance and fermentation of Pichia kudriavzevii N77-4 isolated from the Korean traditional fermentation starter Nuruk , Journal of the Brewing Society of Japan 114(6):324-329, 114( 6), 324- 329, Jun. 2019,  
5
Overexpression of PkINO1 improves ethanol resistance of Pichia kudriavzevii N77-4 isolated from the Korean traditional fermentation starter nuruk , J Biosci Bioeng., 126( 6), 682- 689, Dec. 2018,  
6
Genetic analysis of suppressor mutants of a pho84 disruptant in the search for genes involved in intracellular inorganic phosphate sensing in Saccharomyces cerevisiae , Genes Genet. Syst., 93( 5), 199- 207, Nov. 2018, https://doi.org/10.1266/ggs.18-00014 
7
Molecular breeding of Saccharomyces cerevisiae with high RNA content by harnessing essential ribosomal RNA transcription regulator , AMB Express, 7,  32- 32, Dec. 2017,  
8
Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation , AMB EXPRESS, 6,  107- 107, Nov. 2016, https://doi.org/10.1186/s13568-016-0285-x 
9
Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 122( 4), 415- 420, Oct. 2016, https://doi.org/10.1016/j.jbiosc.2016.03.010 
10
CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae , SCIENTIFIC REPORTS, 6,  30278- 30278, Aug. 2016, https://doi.org/10.1038/srep30278 
11
Improved stress resistance and ethanol production by segmental haploidization of the diploid genome in Saccharomyces cerevisiae , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 121( 6), 638- 644, Jun. 2016, https://doi.org/10.1016/j.jbiosc.2015.10.012 
12
Candida tropicalis Isolated from Tuak, a North Sumatera-Indonesian Traditional Beverage, for Bioethanol Production , Microbiol. Biotechnol. Lett., 43( 3), 241- 248, Oct. 2015,  
13
Genome-wide construction of a series of designed segmental aneuploids in Saccharomyces cerevisiae , Scientific Reports, 5,  12510- 12510, Sep. 2015, 10.1038/srep12510 
14
Stabilization of mini-chromosome segregation during mitotic growth by overexpression of YCR041W and its application to chromosome engineering in Saccharomyces cerevisiae , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 119( 5), 526- 531, May. 2015, https://doi.org/10.1016/j.jbiosc.2014.10.006 
15
Type 2C protein phosphatase Ptc6 participates in activation of the Slt2-mediated cell wall integrity pathway in Saccharomyces cerevisiae , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 119( 4), 392- 398, Apr. 2015, https://doi.org/10.1016/j.jbiosc.2014.09.013 
16
Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae , J. Biosci. Bioeng., 120( 2), 121- 127, Jan. 2015, 10.1016/j.jbiosc.2014.12.017 
17
The protein phosphatase Siw14 controls caffeine-induced nuclear localization and phosphorylation of Gln3 via the type 2A protein phosphatases Pph21 and Pph22 in Saccharomyces cerevisiae , JOURNAL OF BIOCHEMISTRY, 157( 1), 53- 64, Jan. 2015, https://doi.org/10.1093/jb/mvu055 
18
Effects of deletion of different PP2C protein phosphatase genes on stress responses in Saccharomyces cerevisiae , YEAST, 31( 10), 393- 409, Oct. 2014, https://doi.org/10.1002/yea.3032 
19
Genome-wide mapping of unexplored essential regions in the Saccharomyces cerevisiae genome: evidence for hidden synthetic lethal combinations in a genetic interaction network , NUCLEIC ACIDS RESEARCH, 42( 15), 9838- 9853, Sep. 2014, https://doi.org/10.1093/nar/gku576 
20
Nuclear Localization of Haa1, Which Is Linked to Its Phosphorylation Status, Mediates Lactic Acid Tolerance in Saccharomyces cerevisiae , APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 80( 11), 3488- 3495, Jun. 2014, https://doi.org/10.1128/AEM.04241-13 
21
Suppression mechanism of the calcium sensitivity in S Delta accharomyces cerevisiae ptp2 Delta Amsg5 Delta double disruptant involves a novel HOG-independent function of Ssk2, transcription factor Msn2 and the protein kinase A component Bcyl , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 117( 2), 135- 141, Feb. 2014, https://doi.org/10.1016/j.jbiosc.2013.06.022 
22
Cloning and functional analysis of HpFAD2 and HpFAD3 genes encoding Delta 12-and Delta 15-fatty acid desaturases in Hansenula polymorpha , GENE, 533( 1), 110- 118, Jan. 2014, https://doi.org/10.1016/j.gene.2013.09.115 
23
Ketoacyl synthase domain is a major determinant for fatty acyl chain length in Saccharomyces cerevisiae , ARCHIVES OF MICROBIOLOGY, 195( 12), 843- 852, Dec. 2013, https://doi.org/10.1007/s00203-013-0933-3 
24
Increase in rRNA content in a Saccharomyces cerevisiae suppressor strain from rrn10 disruptant by rDNA cluster duplication , APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 97( 20), 9011- 9019, Oct. 2013, https://doi.org/10.1007/s00253-013-5065-9 
25
Increased transcription of RPL40A and RPL40B is important for the improvement ofRNA production in Saccharomyces cerevisiae , Journal of Bioscience and Bioengineering, 116( 4), 423- 432, Oct. 2013, https://doi.org/10.1016/j.jbiosc.2013.04.006 
26
Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 115( 5), 467- 474, May. 2013, https://doi.org/10.1016/j.jbiosc.2012.11.014 
27
Functionally redundant protein phosphatase genes PTP2 and MSG5 co-regulate the calcium signaling pathway in Saccharomyces cerevisiae upon exposure to high extracellular calcium concentration , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 115( 2), 138- 146, Feb. 2013, https://doi.org/10.1016/j.jbiosc.2012.08.022 
28
Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14 , Journal of Bioscience and Bioengineering, 115( 1), 20- 23, Jan. 2013, https://doi.org/10.1016/j.jbiosc.2012.07.018 
29
Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase , BIOTECHNOLOGY ADVANCES, 30( 6), 1289- 1300, Nov. 2012, https://doi.org/10.1016/j.biotechadv.2011.09.002 
30
Characterization and gene expression profiles of thermotolerant Saccharomyces cerevisiae isolates from Thai fruits , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 114( 2), 144- 149, Aug. 2012, https://doi.org/10.1016/j.jbiosc.2012.03.012 
31
Increased transcription of NOP15, involved in ribosome biogenesis in Saccharomyces cerevisiae, enhances the production yield of RNA as a source of nucleotide seasoning , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 114( 1), 17- 22, Jul. 2012, https://doi.org/10.1016/j.jbiosc.2012.02.022 
32
Large-scale genome reorganization in Saccharomyces cerevisiae through combinatorial loss of mini-chromosomes , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 113( 6), 675- 682, Jun. 2012, https://doi.org/10.1016/j.jbiosc.2012.01.013 
33
Lactic-acid stress causes vacuolar fragmentation and impairs intracellular amino-acid homeostasis in Saccharomyces cerevisiae , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 113( 4), 421- 430, Apr. 2012, https://doi.org/10.1016/j.jbiosc.2011.11.010 
34
Creation of an Ethanol-Tolerant Yeast Strain by Genome Reconstruction Based on Chromosome Splitting Technology , JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 22( 2), 184- 189, Feb. 2012, https://doi.org/10.4014/jmb.1109.09046 
35
Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol , NEW BIOTECHNOLOGY, 29( 3), 379- 386, Feb. 2012, https://doi.org/10.1016/j.nbt.2011.07.002 
36
CDC19 encoding pyruvate kinase is important for high-temperature tolerance in Saccharomyces cerevisiae , NEW BIOTECHNOLOGY, 29( 2), 166- 176, Jan. 2012, https://doi.org/10.1016/j.nbt.2011.03.007 
37
Construction of a Saccharomyces cerevisiae strain with a high level of RNA , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 112( 1), 1- 7, Jul. 2011, https://doi.org/10.1016/j.jbiosc.2011.03.011 
38
Genetic interactions of ribosome maturation factors Yvh1 and Mrt4 influence mRNA decay, glycogen accumulation, and the expression of early meiotic genes in Saccharomyces cerevisiae , JOURNAL OF BIOCHEMISTRY, 150( 1), 103- 111, Jul. 2011, https://doi.org/10.1093/jb/mvr040 
39
Saccharomyces cerevisiae protein phosphatase Ppz1 and protein kinases Sat4 and Hal5 are involved in the control of subcellular localization of Gln3 by likely regulating its phosphorylation state , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 111( 3), 249- 254, Mar. 2011, https://doi.org/10.1016/j.jbiosc.2010.11.013 
40
Ethanol production from biomass by repetitive solid-state fed-batch fermentation with continuous recovery of ethanol , APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 88( 1), 87- 94, Sep. 2010, https://doi.org/10.1007/s00253-010-2716-y 
41
Deciphering cellular functions of protein phosphatases by comparison of gene expression profiles in Saccharomyces cerevisiae , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 109( 5), 433- 441, May. 2010, https://doi.org/10.1016/j.jbiosc.2009.10.023 
42
Molecular Breeding of a Super Yeast for Efficient Bioethanol Production from Waste Clothes at High-Temperature and Low-pH Condition , SEN-I GAKKAISHI, 66( 5), P159- P163, May. 2010,  
43
Identification of protein kinase disruptions as suppressors of the calcium sensitivity of S. cerevisiae Delta ptp2 Delta msg5 protein phosphatase double disruptant , ARCHIVES OF MICROBIOLOGY, 192( 3), 157- 165, Mar. 2010, https://doi.org/10.1007/s00203-009-0531-6 
44
Development of genome-engineering technology and its application to genome science and biotechnology in Saccharomyces cerevisiae , Seibutukougakkaishi, 88( 2), 54- 59, Jan. 2010,  
45
Acid regisitance in Saccharomyces cerevisiae: its mechanism and application to carbon neutral biotechnology , Journal of the Brewing Society of Japan, 104( 12), 944- 950, Dec. 2009,  
46
Advances in molecular methods to alter chromosomes and genome in the yeast Saccharomyces cerevisiae , APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 84( 6), 1045- 1052, Oct. 2009, https://doi.org/10.1007/s00253-009-2144-z 
47
Yeast protein phosphatases Ptp2p and Msg5p are involved in G1-S transition, CLN2 transcription, and vacuole morphogenesis , ARCHIVES OF MICROBIOLOGY, 191( 9), 721- 733, Sep. 2009, https://doi.org/10.1007/s00203-009-0498-3 
48
Construction and Characterization of Single-Gene Chromosomes in Saccharomyces cerevisiae , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 106( 6), 563- 567, Dec. 2008, https://doi.org/10.1263/jbb.106.563 
49
PCR-mediated one-step deletion of targeted chromosomal regions in haploid Saccharomyces cerevisiae , APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 80( 3), 545- 553, Sep. 2008, https://doi.org/10.1007/s00253-008-1609-9 
50
Conditional chromosome splitting in Saccharomyces cerevisiae using the homing endonuclease PI-SceI , APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 79( 4), 699- 706, Jun. 2008, https://doi.org/10.1007/s00253-008-1465-7 
51
Functional analysis of very long-chain fatty acid elongase gene, HpELO2, in the methylotrophic yeast Hansenula polymorpha , APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 76( 2), 417- 427, Aug. 2007, https://doi.org/10.1007/s00253-007-1012-y 
52
Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism , APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 75( 3), 589- 597, Jun. 2007, https://doi.org/10.1007/s00253-007-0859-2 
53
Chromosome-shuffling technique for selected chromosomal segments in Saccharomyces cerevisiae , APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 72( 5), 947- 952, Oct. 2006, https://doi.org/10.1007/s00253-006-0342-5 
54
Chromosome XII context is important for rDNA function in yeast , NUCLEIC ACIDS RESEARCH, 34( 10), 2914- 2924, May. 2006, https://doi.org/10.1093/nar/gkl293 
55
A versatile and general splitting technology for generating targeted YAC subclones , APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 69( 1), 65- 70, Nov. 2005, https://doi.org/10.1007/s00253-005-1970-x 
56
Effects of N-glycosylation and inositol on the ER stress response in yeast Saccharomyces cerevisiae , BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 69( 7), 1274- 1280, Jul. 2005, https://doi.org/10.1271/bbb.69.1274 
57
PCR-mediated repeated chromosome splitting in Saccharomyces cerevisiae , BIOTECHNIQUES, 38( 6), 909- 914, Jun. 2005, https://doi.org/10.2144/05386RR01 
58
Repeated Chromosome Splitting Targeted to δ Sequences in Saccharomyces cerevisiae , Journal of Bioscience and Bioengineering, 96( 4), 397- 400, Apr. 2003, https://doi.org/10.1263/jbb.96.397 
59
Creating a Saccharomyces cerevisiae haploid strain having 21 chromosomes , JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 95( 1), 89- 94, Jan. 2003, https://doi.org/10.1263/jbb.95.89 
60
The Saccharomyces cerevisiae Isw2p-Itc1p complex represses INO1 expression and maintains cell morphology , J. Bacteriol., 183( 17), 4985- 4993, Apr. 2001, https://doi.org/10.1128/JB.183.17.4985-4993.2001 
61
Modification of metabolic pathways of Saccharomyces cerevisiae by the expression of lactate dehydrogenase and deletion of pyruvate decarboxylase genes for the lactic acid fermentation at low pH value , JOURNAL OF FERMENTATION AND BIOENGINEERING, 86( 3), 284- 289, Mar. 1998, https://doi.org/10.1016/S0922-338X(98)80131-1 
62
Suppression of the Saccharomyces cerevisiae hac1/ire15 mutation by yeast genes and human cDNAs , Gene, 201( 1-2), 5- 10, Jan. 1997,  

 

Conference Activities & Talks
No.Title, URL, Presentation date, Vol( No), Start Page- End Page, Publication date 
1
Molecular genetic analysis and application of yeasts for biotechnology, , Dec. 19, 2019, ,  10- 10,   
2
Molecular genetic analysis and application of yeasts for biotechnology, , Dec. 18, 2019, ,  10- 10,   
3
Analysis and Enhancement of the Ethanol Resistance of Pichia kudriavzevii N77-4, a strain Newly Isolated from the Korean Traditional Fermentation Starter Nuruk, for Improved Fermentation Performance, , Oct. 23, 2019, ,  10- 10,   
4
Mechanism of Adaptation to High Temperature Stress in Super Thermotolerant Saccharomyces cerevisiae SPY3, , Oct. 22, 2019, ,  10- 10,   
5
Molecular genetic analysis and application of yeasts for bioproduction, , Nov. 6, 2018, ,  10- 10,