Hiroshima Institute of Technology

Researchers Information System

Japanese English

TOP
Search by Faculty
or Department
Search by Keyword
Search by Research
Field
Detailed Search

Hiroshima Institute of Technology top

NAKAI Tadashi

Profile Research field Research achievement

 

Reports
No.Title URL, Journal, Vol( No), Start Page- End Page, Publication date 
1
Development of a Fluorescent Protein-based Laboratory Course for Life Science Students (in press) , Bull. Hiroshima Inst. Tech. Education, 19,  61- 69, Feb. 3, 2020 
2
Crystal structure of P-protein of the glycine cleavage system from Thermus thermophilus HB8 , SPring-8 Research Frontiers 2005, ,  14- 15, Nov. 2006 

 

Academic papers
No.Title URL, Journal, Vol( No), Start Page- End Page, Publication date, DOI 
1
Eight genes are necessary and sufficient for biogenesis of quinohemoprotein amine dehydrogenase , Biosci. Biotechnol. Biochem., 85( 9), 2026- 2029, Jun. 30, 2021, 10.1093/bbb/zbab117 
2
[Novel radical SAM enzyme forming intrapeptidyl crosslinks] (Article in Japanese) , Seikagaku, 88( 4), 506- 510, Aug. 2016, 10.14952/SEIKAGAKU.2016.880506 
3
Cellular uptake of hepatitis B virus envelope L particles is independent of sodium taurocholate cotransporting polypeptide, but dependent on heparan sulfate proteoglycan. , Virology, 497,  23- 32, Jul. 13, 2016, 10.1016/j.virol.2016.06.024 
4
Mutational analysis of hepatitis B virus pre-S1 (9-24) fusogenic peptide. , Biochemical and biophysical research communications, 474( 2), 406- 412, Apr. 2016, 10.1016/j.bbrc.2016.04.125 
5
Bio-nanocapsules displaying various immunoglobulins as an active targeting-based drug delivery system. , Acta biomaterialia, 35,  238- 247, Feb. 2016, 10.1016/j.actbio.2016.02.010 
6
Cytokine-dependent activation of JAK-STAT pathway in Saccharomyces cerevisiae. , Biotechnology and bioengineering, 113( 8), 1796- 1804, Feb. 2016, 10.1002/bit.25948 
7
Probing the Catalytic Mechanism of Copper Amine Oxidase from Arthrobacter globiformis with Halide Ions. , The Journal of biological chemistry, 290( 38), 23094- 23109, Sep. 2015, 10.1074/jbc.M115.662726 
8
The Radical S-Adenosyl-L-methionine Enzyme QhpD Catalyzes Sequential Formation of Intra-protein Sulfur-to-Methylene Carbon Thioether Bonds , J. Biol. Chem., 290( 17), 11144- 11166, Mar. 2015, 10.1074/jbc.M115.638320 
9
Identification of Genes Essential for the Biogenesis of Quinohemoprotein Amine Dehydrogenase. , Biochemistry, 53( 5), 895- 907, Jan. 2014, 10.1021/bi401625m 
10
[An unusual protease essential for biogenesis of quinohemoprotein amine dehydrogenase] (Article in Japanese) , Seisan to Gijutsu, 64( 4), 37- 39, Oct. 2012,  
11
An unusual subtilisin-like serine protease is essential for biogenesis of quinohemoprotein amine dehydrogenase. , J. Biol. Chem., 287( 9), 6530- 6538, Jan. 2012, 10.1074/jbc.M111.324756 
12
[Mechanisms of biosynthesis of built-in cofactors] (Article in Japanese) , Seikagaku, 83( 8), 691- 703, Aug. 2011,  
13
A protein-protein interaction map of trypanosome ~20S editosomes , J. Biol. Chem., 285( 8), 5282- 5295, Feb. 2010, 10.1074/jbc.M109.059378 
14
Structural bases for the specific interactions between the E2 and E3 components of the Thermus thermophilus 2-oxo acid dehydrogenase complexes , J. Biochem., 143( 6), 747- 758, Jun. 2008, 10.1093/jb/mvn033 
15
[Crystal structure of P-protein of the glycine cleavage system: Implications for nonketotic hyperglycinemia] (Article in Japanese) , Journal of the Crystallographic Society of Japan, 48( 4), 265- 270, Sep. 2006, 10.5940/jcrsj.48.265 
16
Structure of P-protein of the glycine cleavage system: Implications for nonketotic hyperglycinemia , EMBO J., 24( 8), 1523- 1536, Mar. 2005, 10.1038/sj.emboj.7600632 
17
Ligand-induced conformational changes and a reaction intermediate in branched-chain 2-oxo acid dehydrogenase (E1) from Thermus thermophilus HB8, as revealed by X-ray crystallography , J. Mol. Biol., 337( 4), 1011- 1033, Apr. 2004, 10.1016/j.jmb.2004.02.011 
18
Structure of Thermus thermophilus HB8 H-protein of the glycine-cleavage system, resolved by a six-dimensional molecular-replacement method , Acta Crystallogr. D Biol. Crystallogr., 59( 9), 1610- 1618, Sep. 2003, 10.1107/S0907444903014975 
19
Coexpression, purification, crystallization and preliminary X-ray characterization of glycine decarboxylase (P-protein) of the glycine-cleavage system from Thermus thermophilus HB8 , Acta Crystallogr. D Biol. Crystallogr., 59( 3), 554- 557, Mar. 2003, 10.1107/S090744490300043X 
20
Mechanism of preferential enrichment, an unusual enantiomeric resolution phenomenon caused by polymorphic transition during crystallization of mixed crystals composed of two enantiomers , J. Am. Chem. Soc., 124( 44), 13139- 13153, Nov. 2002, 10.1021/ja020454r 
21
Substrate recognition mechanism of thermophilic dual-substrate enzyme , J. Biochem., 130( 1), 89- 98, Jul. 2001, 10.1093/oxfordjournals.jbchem.a002966 
22
Structures of Escherichia coli histidinol-phosphate aminotransferase and its complexes with histidinol-phosphate and N-(5'-phosphopyridoxyl)-L-glutamate: double substrate recognition of the enzyme , Biochemistry, 40( 15), 4633- 4644, Apr. 2001, 10.1021/bi002769u 
23
Three-dimensional structure of 4-amino-4-deoxychorismate lyase from Escherichia coli , J. Biochem., 128( 1), 29- 38, Jul. 2000, 10.1093/oxfordjournals.jbchem.a022727 
24
Free energy requirement for domain movement of an enzyme , J. Biol. Chem., 275( 25), 18939- 18945, Jun. 23, 2000, 10.1074/jbc.275.25.18939 
25
A new host 2,3,6,7,10,11-hexahydroxy triphenylene which forms chiral inclusion crystalline lattice: X-ray structural study of the chiral crystalline lattice , J. Phys. Org. Chem., 13( 1), 39- 45, Jan. 2000, 10.1002/(SICI)1099-1395(200001)13:1<39::AID-POC203>3.0.CO;2-8 
26
Extremely Long C-C Bond in (-)-trans-1,2-Di-tert-butyl-1,2-diphenyl- and 1,1-Di-tert-butyl-2,2-diphenyl-3,8-dichlorocyclobuta[b]naphthalenes. , J. Org. Chem., 64( 9), 3102- 3105, Apr. 30, 1999, 10.1021/jo982010c 
27
Structure of Thermus thermophilus HB8 aspartate aminotransferase and its complex with maleate , Biochemistry, 38( 8), 2413- 2424, Feb. 23, 1999, 10.1021/bi9819881 
28
Preferential enrichment: Mode of polymorphic transformation of a mixed crystal into a racemic compound crystal , Mol. Cryst. Liq. Cryst., 313( 1), 211- 216, Dec. 1998, 10.1080/10587259808044277 
29
The novel substrate recognition mechanism utilized by aspartate aminotransferase of the extreme thermophile , J. Biol. Chem., 273( 45), 29554- 29564, Nov. 6, 1998, 10.1074/jbc.273.45.29554 
30
Crystallization and preliminary X-ray characterization of aspartate aminotransferase from an extreme thermophile, Thermus thermophilus HB8 , Acta Crystallogr. D Biol. Crystallogr., 54( 5), 1032- 1034, Sep. 1, 1998, 10.1107/S090744499800434X 

 

Conference Activities & Talks
No.Title, URL, Presentation date, Vol( No), Start Page- End Page, Publication date 
1
Promoter analysis of Pden_1710, a gene neighboring the quinohemoprotein amine dehydrogenase operon (submitted), , Mar. 28, 2020, ,  1662- 1662,   
2
Biochemical and structural analysis of serine proteinase involved in biosynthesis of active-site subunit of quinohemoprotein amine dehydrogenase, , Mar. 28, 2020, ,  1661- 1661,   
3
Functional analysis of serine proteinase involved in biosynthesis of active-site subunit of quinohemoprotein amine dehydrogenase, , Mar. 24, 2019, ,  639- 639,   
4
Functions of the enzyme complex involved in post-translational modification of quinohemoprotein amine dehydrogenase, , Mar. 16, 2018, ,  825- 825,   
5
Cyclic peptide formation by a peptide thioether crosslink-forming enzyme QhpD: Substrate peptide length and sequence allowed for the crosslink, , Mar. 15, 2018, ,  824- 824,   
6
Analysis of substrate specificity of radical SAM enzyme QhpD for developing novel cyclic peptides, , Mar. 18, 2017, ,  753- 753,   
7
FAD-dependent monooxygenase involved in quinone cofactor biosynthesis: spectroscopic properties and interaction with substrate protein QhpC, , Mar. 18, 2017, ,  847- 847,   
8
Purification and spectroscopic properties of FAD-dependent monooxygenase involved in quinone cofactor biosynthesis, , Sep. 27, 2016, ,  3P-375- 3P-375,   
9
Analysis of substrate specificity of intrapeptidyl thioether bond forming enzyme QhpD, , Sep. 27, 2016, ,  3P-377- 3P-377,   
10
Mechanism of sequential formation of intrapeptidyl thioether cross-links by the radical SAM enzyme QhpD, , Sep. 7, 2016, ,  OA-02- OA-02,   
11
Radical SAM superfamily enzymes catalyzing post窶稚ranslational modifications of peptides, , Dec. 1, 2015, ,  1W16-2- 1W16-2,   
12
Biogenesis process of quinohemoprotein amine dehydrogenase accompanying multi-step posttranslational modification and membrane translocation, , Oct. 17, 2014, ,  3T09p-08- 3T09p-08,   
13
Complete journey of quinohemoprotein amine dehydrogenase from genes to periplasm, , Aug. 27, 2014, ,  ST19- ST19,   
14
Analysis of Multisite Cross-linking Reaction by Intra-peptidyl Thioether Bond Forming Enzyme, , Sep. 13, 2013, ,  3T18p-07- 3T18p-07,   
15
Functional Analysis of Intra-peptide Thioether Forming Enzyme Essential for Biogenesis of Quinohemoprotein Amine Dehydrogenase, , Dec. 16, 2012, ,  3T03-08- 3T03-08,   
16
Roles of Peripheral Genes in Biogenesis of Quinohemoprotein Amine Dehydrogenase, , Sep. 24, 2011, ,  4P-0224- 4P-0224,   
17
Structure and Function of [Fe-S]-cluster-binding Protein Essential for Biogenesis of Quinohemoprotein Amine Dehydrogenase, , Sep. 24, 2011, ,  4P-0192- 4P-0192,   
18
Structural bases for the specific interactions between the E2 and E3 components of the Thermus thermophilus 2-oxo acid dehydrogenase complexes, , Oct. 23, 2009, ,  JB論文賞- JB論文賞,   
19
Crystal structure of P-protein of the glycine cleavage system, , Aug. 2005, 61,  C189- C190,   
20
X-ray structure studies of H- and L-proteins of glycine cleavage system from Thermus thermophilus, , Aug. 2002, 58,  C286- C286,   
21
Dynamism of enzyme : Induced-fit by the hydrophobicity of the substrate., , Dec. 1, 1998, ,  324- 324,   
22
A thermophilic dual-substrate enzyme has a flexible substrate-binding site, , Dec. 1, 1998, ,  325- 325,   
23
Conformational change in extremely thermophilic bacterium aspartate aminotransferase., , Sep. 7, 1998, 38( Supple 2), S40- S40,